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Enhancement of phase synchronization through asymmetric couplings
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Phase synchronization in lattices of coupled chaotic oscillators is studied. It is found that phase synchroni-
zation can be greatly improved by asymmetric biased coupling. The mechanism responsible for this effect is
the transition from a localized wave to synchronized flow and nonlocal phase synchronization.

PACS numbes): 05.45.Xt, 05.45.Pq

Phase entrainment among a group of oscillators with disa nonlinear function withP the parameter set. Due to the
tributed natural frequencies is a commonly observed phenonlinearity, the flow of individual oscillators in phase space
nomenon in many realistic casgls2], for example, in phys- s usually chaotic. Two types of coupling, i.e., diffusive cou-
ics (such as coupled lasers, Josephson junction arraypiing with strengthK and a drift(gradien} coupling &, are
magnetic resonance, charged wave instabilities in plasmajntroduced, and denotes a coupling matrix. The total cou-
networks of biological oscillators(electrical synchrony pling is asymmetric because of the presence of the drift cou-
among cardiac pacemakers, heartbeat synchronization witlling. In this paper we study the case of a three-dimensional
ventilation, resting tremor in Parkinson’s disease, flashing othaotic flowX;=(x;,y;,z) andx coupling, i.e.,D;;=1 and
fireflies, chirping of crickets, etg.and chemical oscillators D;;=0 fori#1 andj# 1. A paradigmatic example in studies
[3]. In the classical sense, synchronization of periodic selfof chaos is the Rssler oscillator. When oscillators are
sustained oscillators is Usua”y defined as IOCking of thQ‘;oup|ed in the above way, the equa‘[ion of motion can be
phasemé;—n#,=const due to weak interaction, while the ritten as
amplitudes may be quite different. Recently, the notion of
synchronization has been extended to chaotic oscillators; _ T _
(driven chaotic oscillators or coupled chaotic oscillators 1 “% Zit (K0 (i1 =x) = (K= 8)(Xi=Xi-),
[4—6]. One of the remarkable findings is the numerical and

experimental observations of the phase synchroniz4B&h yi=wixtay, ()
phenomenon in a system of two mutually coupled noniden-
tical self-sustained chaotic oscillatdrg]. The phenomenon z=f+z(x,—c),

is analogous to synchronization of periodic oscillators where

only phase locking is important, while their amplitudes re-\, harea=0.165.f=0.2. andc= 10 are applied in this paper.
main chaotic and noncorrelated. Clustering PS has been stu he paramete,rSw- :1’ O+A. where the misfit A: e

ied in lattices of coupled chaotic oscillatd@9]. For chaotic [~A.A] and obeyls a uniform distribution AIthougIh the
Sﬁ/stems V]Y'th broad time Ecalesrt](ongdchar?_)ls it was found Idefinition of the phase for a general chaotic oscillator is still
that a perfect PS cannot be achieved, while a PS temporally o5 1enging topic because of the multiple rotation centers

alternating between a number i n lockings was observed [12], the phase of the Rsler system can be conveniently
due to the overlap af:n Arnold tongues in coupled chaotic ;+ oquced as
oscillators[10].

Since synchronization is of great importance in practice, a 4 — fane ATy _
crucial topic is how to optimize the synchronization among oy =tan Ty ()] ©
elements. Phase is a degree that can be relatively easy .
tame in chaotic motions; therefore, it is desirable to investi—ﬁrthermore' as oscillators a.re coup_led to eac_h_ other, PS can
gate the optimization of PS. In the present paper we stud9e achieved wiwen thg .1'1 . Iocklng .Cond't'dm‘_ 01|
the effect of a biased coupling on phase entrainment of cha§(?0ns't or QinQJ' (i#]) is ) sat|sf|ed,' where R
otic oscillators. We reveal that PS can be greatly enhanced lim;__ (1/T)[o6i(t)dt [13]. In Fig. 1, for diffusive cou-
with increase of the biased couplif@l]. We attribute this pling (6=0), we show the PS cascade t@e versusK for
enhancement to the delocalization transition of a localizegjifferent numbers of oscillators. These bifurcation trees ex-

synchronized wave and its consequent nonlocal PS.  hibit a typical cascade from partial PS to full PS, which are
The model we adopt to study the PS behavior is a latticery similar to the phase entrainment behavior for coupled
of nearest-neighbor-coupled chaotic oscillators: periodic oscillator§14]. The tree structure reveals an intrin-

. sic order embedded in high-dimensional chaotic motions.
Xi=F(/P,X) +(K+8)D(X;+1—X;) — (K= 38)D(X;—X;_1), The route from partial to full PS has also been discussed by
(1)  Osipovet al.[8] in terms of the(); vsi profile.
Now we focus on the effect of nonzero drift coupling, i.e.,
whereX;(t) represents the flow of thigh oscillator and=is  the coupling among nearest neighbors is asymmetric. In Fig.
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FIG. 1. The bifurcation tree§; against the diffusive coupling % 0.04 1 K=0.3
strength for(a) N=3, (b) N=5, and(c) N=15. 1 ——K=04
0.021 ——K=05
2, the Q; vsi profiles are plotted foN=100, K=0.6, § T L 454 —K=06
=0.0in 2a), and5=0.3 in Ab). In Fig. 2a), the system lies 0.00 I i s b
in the partial PS state, i.e., a number of plateaus correspond 00 0.1 0.2 0.3 0.4
to synchronized clusters satisfyi@;=(; (i#]). As the S

drift coupling is applied, a full PS can be achieved, i.e., all

oscillators are phase locked to each other. This is shown in FIG. 3. The differenc@ () varying with the coupling bias for
Fig. 2(b), where several clusters merge into a single plateaudifferent diffusive coupling strengthga) A=0.3, (b) A=0.5.
Therefore, the system can reach the full PS under the break-

ing of Coup“ng Symmetry_ In F|g(2)’ we p|0t the prof”e F|g 3(a.), for the CaseA:0.3, we measure the difference

A" for 5=0, whereA™=max x%(t) + y2(1)] ast—. among average winding numbers by introducing

Interestingly, we find that, although oscillators may become N
phase synchronized, their amplitudes may be quite different. AQ= A /1 2 (Q,— Q)2 (4)
This typical breather synchronization is a consequence of NZ ’
oscillation quenching, i.e., the suppression of oscillations. .
The quenching effect can be eliminated by applying a driftwhere Q:(llN)EiN:lQi. It is found that for K
coupling. In Fig. 2d), the profile of A" corresponding to =0.3,0.4,0.5, and 0.6AQ) drops sharply to zero at abogt
Fig. 2(b) is given, where we find all oscillators now execute ~0.16,0.20,0.19, and 0.25, respectively, signifying a transi-
oscillations with almost the same amplitude. tion from partial PS to complete PS. FigurépBgives the
Enhancement of PS via asymmetric coupling can be bettdsehavior of the transition foA =0.5. A similar transition to
shown by measuring a quantity that signifies the degree ahe full PS state can be identified, where F+0.3,0.4,0.5,
PS. We study the case of 100 coupledsRer oscillators. In  and 0.6 AQ becomes zero at approximatelys
=0.123,0.144,0.165, and 0.186, respectively.

L15 115 To reveal the mechanism for this transition, we study the
110 i @ | 110 ®) case of the PS dynamics of a lattice of couplddntical
1057 M 105 Rossler oscillators responding to a periodic driving signal:
Q
(1)2(5) (1)2(5) X1=— X1 — 21+ (K+ 8)(Xo—Xq) —K[X;—10sin wgt) ],
0-9% 20 40 60 80 100 **% 20 40 60 80 100 y1=wX,+ay;,
30 30
24 © 2 @ 2,=f+2,(x,—0),
A8 18 o _ (5)
R VASEAR AR 12 Xi= = 0X; = Z;+ (K+ ) (X + 1= X;) = (K= 8)(Xi =X - 1),
6 6
0 0 yi=wX +ay,

0 20 40 60 80 100 0 20 40 60 80 100
l ! z=f+z(x—c) for i#1.
FIG. 2. (@ The phase synchronization profi®; versusi for
K=0.6 ands=0.0; (b) the same a&) with §=0.3; (c) the profile ~ Here w=1.2, w,=1.0, K=0.9, anda,f,c are the same as
of maximum oscillation amplitude with parameters the sam@as before. When there is no bias for the coupling, ic=,0, one
(d) the profile of maximum oscillation amplitude with parameters may see from the profile d?; vsi in Fig. 4(a) that only the
the same agh). site adjacent to the periodic driving can be synchronized, that
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) cillations with different intrinsic frequencies, the propagation
t of a synchronized wave can cause oscillators whose intrinsic
FIG. 4. (a) The PS profile); versusi for 50 coupled identical frequencies are near to that of the harmonic wave to become
oscillators @=1.2) with the first one driven by a harmonic wave Phase synchronizetbut these oscillators may be nonadja-

10sing); the transition from partial PS to full PS can be observed.cent on the lattice even if the harmonic component, is
(b) The power of the w, component for each oscillator very weak. This forms nonlocal PS clusters. Nonlocal PS

P;(wo)/P1(w,) for different biases of the coupling. satisfies the conditiof;=();, wherei,j are not neighbors,
i#j+1 or j—1 [15]. These clusters in turn drive their

is, the harmonic synchronized wave is localized and camearby oscillators into the PS state, and thus larger clusters

propagate only to its neighbor oscillator. As the biags  may form. Therefore nonlocal PS plays a crucial role in

applied, we find that more and more oscillators are phasérming larger solid PS clusters. A typical instance is the

entrained by the periodic signal. This signifies the delocalcoupled Lorenz oscillators

ization of the harmonic wave. Af.~0.55, all oscillators are

synchronized to the harmonic wave. Therefore the synchro- ﬁ(i:(;(yi—xi)+(K+ O (Xj41— %) — (K= 8)(Xi—Xi_1),

nized wave can propagate along the whole array, which

brings all oscillators to the PS state. In Figby we give the

Fourier analysis of the evolution of each oscillator, where the Yistixi—yimxiz, ™
power of thew, component for each oscillator, :
zi=—bz+xy;.
Pi(wo) = fﬁ Xi(t)expli wot)dt], (6)  Here 0=10, b=8/3, andr;=40+A;, A,e[—10,10. K

=50 [16]. Although the trajectory of each oscillator has

. . . . le rotation centers, on n still defin well-behav
is shown for different biases of the coupling. We use thedOUbe otation centers, one can still define a well-behaved

normalized powerP,(wg)/P,(wo) to get a unified descrip- E)Qaii_f)o(r_ta)(gciyg)sgllator due to the inversion symmetry

tion. For §=0, we find that fori >4 P;(wg)/P1(wg)—0 as b oo

i increases, i.e., the synchronized wave is propagated within [+ y2— \b(r—1)]

a short range. With increasing bias, the synchronized wave 6,(t)=tan ! i Vi ! ®)

becomes less localized and can be transported to a site far ' [zi—(ri—=1)]

from the first one, as shown fa§=0.2,0.4, and 0.5. A

~0.55, the synchronized wave can propagate along thelere(r;—1,J/b(r;—1)) is the rotation center of thih os-

whole array. The delocalization transition of the synchro-cillator. The average winding number can also be defined as

nized wave causes the oscillators far from the driving signathe Rasler case. In Fig. 5, the profiles 8f versusi for §

to be phase locked to their neighbors. If the synchronized=0,30,40, and 50 are shown. The number of oscillators is

wave is chaotic, i.e., if we apply a chaotic oscillator instead\N=100. For§=0, it can be seen from Fig(& that almost

of a periodic oscillator as our driving signal, a similar con- all oscillators are non-phase-synchronized due to the strong

clusion is reached. Therefore, the enhancement of PStochasticity of the Lorenz oscillator, and one is unable to

through asymmetric coupling originates from the delocaliza-observe even a small synchronized cluster.#s30, three

tion transition of the synchronized wave. nonlocal clusters are formgdee Fig. B)]. As many non-
When one applies a harmonic wave to drive a chain oidentical Lorenz oscillators are coupled to each other, full PS

nonidentical oscillators, i.e., where all oscillators perform os-can hardly be achieved. Whei+ 40, the middle cluster be-
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comes smaller. Faf= 50, one finds two clusters in Fig(d, chronized waves and nonlocal PS. The enhancement of PS
with a dominant cluster and a small one, i.e., more and mor&ia asymmetric couplings is a general behavior, which can

oscillators are phase locked to the larger cluster. Nonlocal PBe found in other chaotic systems. This effect should also be
can bring small clusters near the large cluster into a large#seful in applications, for in many cases synchronization is

one. This enhancement of PS is different from the previou®f great importance.

case for Resler oscillators because Lorenz systems exhibit This work is supported by the National Natural Science
stronger stochasticity of chaos. Foundation of China, the Special Funds for Major State Ba-

To summarize, in this paper we present enhancement Gfic Research Projects, the Foundation for University Key
PS by asymmetric coupling in lattices of coupled chaoticTeacher by the Ministry of Education, the Research Grant
Rassler and Lorenz oscillators. The mechanism responsibl€ouncil(RGC), and a Hong Kong Baptist University Faculty
for this effect is the delocalization of the propagation of syn-Research GraniFRG).

[1] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence Phys. Rev. B55, 2353(1997).

(Springer-Verlag, Berlin, 1984 [9] A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Europhys.
[2] A. T. Winfree, Geometry of Biological TiméSpringer-Verlag, Lett. 34, 165(1996.

New York, 1990. [10] M. A. Zaks, E. H. Park, M. G. Rosenblum, and J. Kurths,
[3] B. Hu and Z. Zheng, Int. J. Bifurcation Chaos Appl. Sci. Eng. Phys. Rev. Lett82, 4228(1999.

(to be publisheg [11] G. Hu, J. Z. Yang, W. Q. Ma, and J. H. Xiao, Phys. Rev. Lett.
[4] E. F. Stone, Phys. Lett. A63 367 (1992. 81, 5314(1998.

[5] A. Pikovsky, G. Osipov, M. Rosenblum, M. Zaks, and J. [12] T. Yalcinkaya and Y. C. Lai, Phys. Rev. Le9, 3885(1997.
Kurths, Phys. Rev. Lett79, 47 (1997; A. Pikovsky, M. G.  [13] Here w; represents an intrinsic parameter of the oscillator and

Rosenblum, G. V. Osipov, and J. Kurths, Physicd®@}, 219 Q); is an average frequency of oscillator. Usually they are dif-
(1997). ferent. In the absence of coupling;~ w; .

[6] E. Rosa, E. Ott, and M.H. Hess, Phys. Rev. L8fl.,, 1642 [14] Z. Zheng, G. Hu, and B. Hu, Phys. Rev. Leif, 5318(1998;
(1998. Z. Zheng, B. Hu, and G. Hu, Phys. Rev.62, 402 (2000.

[7] M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phys. Rev.[15] M. Zhan, Z. Zheng, G. Hu, and X. Peng, Phys. Rev6E
Lett. 76, 1804(1996; 78, 4193(1997); U. Parlitzet al, Phys. 3552 (2000.
Rev. E54, 2115(1996; D. Y. Tang and N. R. Heckenberg, [16] For the Lorenz casej andK are larger than in the Rossler
ibid. 55, 6618(1997). case due to the stronger stochasticity of chaos exhibited by

[8] G.V. Osipov, A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Lorenz systems.



