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Enhancement of phase synchronization through asymmetric couplings
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Phase synchronization in lattices of coupled chaotic oscillators is studied. It is found that phase synchroni-
zation can be greatly improved by asymmetric biased coupling. The mechanism responsible for this effect is
the transition from a localized wave to synchronized flow and nonlocal phase synchronization.

PACS number~s!: 05.45.Xt, 05.45.Pq
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Phase entrainment among a group of oscillators with
tributed natural frequencies is a commonly observed p
nomenon in many realistic cases@1,2#, for example, in phys-
ics ~such as coupled lasers, Josephson junction arr
magnetic resonance, charged wave instabilities in plasm!,
networks of biological oscillators~electrical synchrony
among cardiac pacemakers, heartbeat synchronization
ventilation, resting tremor in Parkinson’s disease, flashing
fireflies, chirping of crickets, etc.!, and chemical oscillators
@3#. In the classical sense, synchronization of periodic s
sustained oscillators is usually defined as locking of
phase,mu12nu25const due to weak interaction, while th
amplitudes may be quite different. Recently, the notion
synchronization has been extended to chaotic oscilla
~driven chaotic oscillators or coupled chaotic oscillato!
@4–6#. One of the remarkable findings is the numerical a
experimental observations of the phase synchronization~PS!
phenomenon in a system of two mutually coupled nonid
tical self-sustained chaotic oscillators@7#. The phenomenon
is analogous to synchronization of periodic oscillators wh
only phase locking is important, while their amplitudes r
main chaotic and noncorrelated. Clustering PS has been s
ied in lattices of coupled chaotic oscillators@8,9#. For chaotic
systems with broad time scales~strong chaos!, it was found
that a perfect PS cannot be achieved, while a PS tempo
alternating between a number ofm:n lockings was observed
due to the overlap ofm:n Arnold tongues in coupled chaoti
oscillators@10#.

Since synchronization is of great importance in practice
crucial topic is how to optimize the synchronization amo
elements. Phase is a degree that can be relatively eas
tame in chaotic motions; therefore, it is desirable to inve
gate the optimization of PS. In the present paper we st
the effect of a biased coupling on phase entrainment of c
otic oscillators. We reveal that PS can be greatly enhan
with increase of the biased coupling@11#. We attribute this
enhancement to the delocalization transition of a locali
synchronized wave and its consequent nonlocal PS.

The model we adopt to study the PS behavior is a lat
of nearest-neighbor-coupled chaotic oscillators:

Ẋ i5F„P,Xi)1~K1d!D„X i 11ÀX i)2~K2d!D„X iÀX i 21),
~1!

whereX i(t) represents the flow of thei th oscillator andF is
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a nonlinear function withP the parameter set. Due to th
nonlinearity, the flow of individual oscillators in phase spa
is usually chaotic. Two types of coupling, i.e., diffusive co
pling with strengthK and a drift~gradient! coupling d, are
introduced, andD denotes a coupling matrix. The total cou
pling is asymmetric because of the presence of the drift c
pling. In this paper we study the case of a three-dimensio
chaotic flowX iÄ„xi ,yi ,zi) andx coupling, i.e.,D1151 and
Di j 50 for iÞ1 andj Þ1. A paradigmatic example in studie
of chaos is the Ro¨ssler oscillator. When oscillators ar
coupled in the above way, the equation of motion can
written as

ẋi52v ixi2zi1~K1d!~xi 112xi !2~K2d!~xi2xi 21!,

ẏi5v ixi1ayi , ~2!

żi5 f 1zi~xi2c!,

wherea50.165, f 50.2, andc510 are applied in this paper
The parametersv i51.01D i , where the misfit D iP
@2D,D# and obeys a uniform distribution. Although th
definition of the phase for a general chaotic oscillator is s
a challenging topic because of the multiple rotation cent
@12#, the phase of the Ro¨ssler system can be convenient
introduced as

u i~ t !5tan21@yi~ t !/xi~ t !#. ~3!

Furthermore, as oscillators are coupled to each other, PS
be achieved when the 1:1 locking conditionuu i2u j u
,const or V i5V j ( iÞ j ) is satisfied, where V i

5 lim
T→`

(1/T)*0
Tu̇ i(t)dt @13#. In Fig. 1, for diffusive cou-

pling (d50), we show the PS cascade treeV i versusK for
different numbers of oscillators. These bifurcation trees
hibit a typical cascade from partial PS to full PS, which a
very similar to the phase entrainment behavior for coup
periodic oscillators@14#. The tree structure reveals an intrin
sic order embedded in high-dimensional chaotic motio
The route from partial to full PS has also been discussed
Osipovet al. @8# in terms of theV i vs i profile.

Now we focus on the effect of nonzero drift coupling, i.e
the coupling among nearest neighbors is asymmetric. In
7501 ©2000 The American Physical Society
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2, the V i vs i profiles are plotted forN5100, K50.6, d
50.0 in 2~a!, andd50.3 in 2~b!. In Fig. 2~a!, the system lies
in the partial PS state, i.e., a number of plateaus corresp
to synchronized clusters satisfyingV i5V j ( iÞ j ). As the
drift coupling is applied, a full PS can be achieved, i.e.,
oscillators are phase locked to each other. This is show
Fig. 2~b!, where several clusters merge into a single plate
Therefore, the system can reach the full PS under the br
ing of coupling symmetry. In Fig. 2~c!, we plot the profile
Ai

max for d50, whereAi
max5max@Axi

2(t)1yi
2(t)# as t→`.

Interestingly, we find that, although oscillators may beco
phase synchronized, their amplitudes may be quite differ
This typical breather synchronization is a consequence
oscillation quenching, i.e., the suppression of oscillatio
The quenching effect can be eliminated by applying a d
coupling. In Fig. 2~d!, the profile ofAi

max corresponding to
Fig. 2~b! is given, where we find all oscillators now execu
oscillations with almost the same amplitude.

Enhancement of PS via asymmetric coupling can be be
shown by measuring a quantity that signifies the degree
PS. We study the case of 100 coupled Ro¨ssler oscillators. In

FIG. 1. The bifurcation treesV i against the diffusive coupling
strength for~a! N53, ~b! N55, and~c! N515.

FIG. 2. ~a! The phase synchronization profileV i versusi for
K50.6 andd50.0; ~b! the same as~a! with d50.3; ~c! the profile
of maximum oscillation amplitude with parameters the same as~a!;
~d! the profile of maximum oscillation amplitude with paramete
the same as~b!.
nd

ll
in
u.
k-

e
t.

of
.
t

er
of

Fig. 3~a!, for the caseD50.3, we measure the differenc
among average winding numbers by introducing

DV5A1

N (
i 51

N

~V i2V̄!2, ~4!

where V̄5(1/N)( i 51
N V i . It is found that for K

50.3,0.4,0.5, and 0.6,DV drops sharply to zero at aboutd
'0.16,0.20,0.19, and 0.25, respectively, signifying a tran
tion from partial PS to complete PS. Figure 3~b! gives the
behavior of the transition forD50.5. A similar transition to
the full PS state can be identified, where forK50.3,0.4,0.5,
and 0.6 DV becomes zero at approximatelyd
50.123,0.144,0.165, and 0.186, respectively.

To reveal the mechanism for this transition, we study
case of the PS dynamics of a lattice of coupledidentical
Rössler oscillators responding to a periodic driving signa

ẋ152vx12z11~K1d!~x22x1!2K@x1210sin~v0t !#,

ẏ15vx11ay1 ,

ż15 f 1z1~x12c!,
~5!

ẋi52vxi2zi1~K1d!~xi 112xi !2~K2d!~xi2xi 21!,

ẏi5vxi1ayi ,

żi5 f 1zi~xi2c! for iÞ1.

Here v51.2, v051.0, K50.9, anda, f ,c are the same as
before. When there is no bias for the coupling, i.e.,d50, one
may see from the profile ofV i vs i in Fig. 4~a! that only the
site adjacent to the periodic driving can be synchronized,

FIG. 3. The differenceDV varying with the coupling biasd for
different diffusive coupling strengths.~a! D50.3, ~b! D50.5.
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is, the harmonic synchronized wave is localized and
propagate only to its neighbor oscillator. As the biasd is
applied, we find that more and more oscillators are ph
entrained by the periodic signal. This signifies the deloc
ization of the harmonic wave. Atdc'0.55, all oscillators are
synchronized to the harmonic wave. Therefore the synch
nized wave can propagate along the whole array, wh
brings all oscillators to the PS state. In Fig. 4~b!, we give the
Fourier analysis of the evolution of each oscillator, where
power of thev0 component for each oscillator,

Pi~v0!5U E
2`

`

xi~ t !exp~ iv0t !dtU, ~6!

is shown for different biases of the coupling. We use
normalized powerPi(v0)/P1(v0) to get a unified descrip
tion. Ford50, we find that fori .4 Pi(v0)/P1(v0)→0 as
i increases, i.e., the synchronized wave is propagated w
a short range. With increasing bias, the synchronized w
becomes less localized and can be transported to a sit
from the first one, as shown ford50.2,0.4, and 0.5. Atd
'0.55, the synchronized wave can propagate along
whole array. The delocalization transition of the synch
nized wave causes the oscillators far from the driving sig
to be phase locked to their neighbors. If the synchroni
wave is chaotic, i.e., if we apply a chaotic oscillator inste
of a periodic oscillator as our driving signal, a similar co
clusion is reached. Therefore, the enhancement of
through asymmetric coupling originates from the delocali
tion transition of the synchronized wave.

When one applies a harmonic wave to drive a chain
nonidentical oscillators, i.e., where all oscillators perform

FIG. 4. ~a! The PS profileV i versusi for 50 coupled identical
oscillators (v51.2) with the first one driven by a harmonic wav
10sin(t); the transition from partial PS to full PS can be observ
~b! The power of the v0 component for each oscillato
Pi(v0)/P1(v0) for different biases of the coupling.
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cillations with different intrinsic frequencies, the propagati
of a synchronized wave can cause oscillators whose intri
frequencies are near to that of the harmonic wave to bec
phase synchronized~but these oscillators may be nonadj
cent on the lattice!, even if the harmonic componentv0 is
very weak. This forms nonlocal PS clusters. Nonlocal
satisfies the conditionV i5V j , wherei , j are not neighbors,
iÞ j 11 or j 21 @15#. These clusters in turn drive the
nearby oscillators into the PS state, and thus larger clus
may form. Therefore nonlocal PS plays a crucial role
forming larger solid PS clusters. A typical instance is t
coupled Lorenz oscillators

ẋi5s~yi2xi !1~K1d!~xi 112xi !2~K2d!~xi2xi 21!,

ẏi5r ixi2yi2xizi , ~7!

żi52bzi1xiyi .

Here s510, b58/3, and r i5401D i , D iP@210,10#. K
550 @16#. Although the trajectory of each oscillator ha
double rotation centers, one can still define a well-beha
phase for each oscillator due to the inversion symme
(xi ,yi)→(2xi ,2yi):

u i~ t !5tan21H @Axi
21yi

22Ab~r i21!#

@zi2~r i21!#
J . ~8!

Here „r i21,Ab(r i21)… is the rotation center of thei th os-
cillator. The average winding number can also be defined
the Rössler case. In Fig. 5, the profiles ofV i versusi for d
50,30,40, and 50 are shown. The number of oscillators
N5100. Ford50, it can be seen from Fig. 5~a! that almost
all oscillators are non-phase-synchronized due to the str
stochasticity of the Lorenz oscillator, and one is unable
observe even a small synchronized cluster. Asd530, three
nonlocal clusters are formed@see Fig. 5~b!#. As many non-
identical Lorenz oscillators are coupled to each other, full
can hardly be achieved. Whend540, the middle cluster be

.

FIG. 5. The phase synchronization profileV i versus i for N
5100 coupled nonidentical Lorenz oscillators withK550, D
510.0, and different bias couplingsd50,30,40,50 for~a!, ~b!, ~c!,
~d!, respectively.
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comes smaller. Ford550, one finds two clusters in Fig. 5~d!,
with a dominant cluster and a small one, i.e., more and m
oscillators are phase locked to the larger cluster. Nonloca
can bring small clusters near the large cluster into a lar
one. This enhancement of PS is different from the previ
case for Ro¨ssler oscillators because Lorenz systems exh
stronger stochasticity of chaos.

To summarize, in this paper we present enhancemen
PS by asymmetric coupling in lattices of coupled chao
Rössler and Lorenz oscillators. The mechanism respons
for this effect is the delocalization of the propagation of sy
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chronized waves and nonlocal PS. The enhancement o
via asymmetric couplings is a general behavior, which c
be found in other chaotic systems. This effect should also
useful in applications, for in many cases synchronization
of great importance.
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